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We provide a comprehensive analysis of the out-of-sample performance of a wide variety of spot rate
models in forecasting the probability density of future interest rates. Although the most parsimonious
models perform best in forecasting the conditional mean of many financial time series, we find that the
spot rate models that incorporate conditional heteroscedasticity and excess kurtosis or heavy tails have
better density forecasts. Generalized autoregressive conditional heteroscedasticity significantly improves
the modeling of the conditional variance and kurtosis, whereas regime switching and jumps improve the
modeling of the marginal density of interest rates. Our analysis shows that the sophisticated spot rate
models in the existing literature are important for applications involving density forecasts of interest rates.
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1. INTRODUCTION

The short-term interest rate plays an important role in many
areas of asset pricing studies. For example, the instantaneous
risk-free interest rate, or the so-called “spot rate,” is the state
variable that determines the evolution of the yield curve in the
well-known term structure models of Vasicek (1977) and Cox,
Ingersoll, and Ross (CIR) (1985). The spot rate is thus of fun-
damental importance to the pricing of fixed-income securities
and the management of interest rate risk. Many interest rate
models have been proposed, and over the last decade, a vast
body of literature has been developed to rigorously estimate
and test these models using high-quality interest rate data. (See,
e.g., Chapman and Pearson 2001 for a survey of the empiri-
cal literature.)

Despite the progress that has been made in modeling interest
rate dynamics, most existing studies have typically focused on
the in-sample fit of historical interest rates and ignored out-of-
sample forecasts of future interest rates. In-sample diagnostic
analysis is important and can reveal useful information about
possible sources of model misspecifications. In many financial
applications, such as the pricing and hedging of fixed-income
securities and the management of interest rate risk, however,
what matters most is the evolution of the interest rate in the
future, not in the past.

In general, there is no guarantee that a model that fits his-
torical data well will also perform well out-of-sample due to
at least three important reasons. First, the extensive search for
more complicated models using the same (or similar) dataset(s)
may suffer from the so-called “data-snooping bias,” as pointed
out by Lo and MacKinlay (1989) and White (2000). A more-
complicated model can always fit a given dataset better than
simpler models, but it may overfit some idiosyncratic features
of the data without capturing the true data-generating process.

Out-of-sample evaluation will alleviate, if not eliminate com-
pletely, such data-snooping bias. Second, an overparameterized
model contains a large number of estimated parameters and in-
evitably exhibits excessive sampling variation in parameter es-
timation, which in turn may adversely affect the out-of-sample
forecast performance. Third, a model that fits a historical
dataset well may not forecast the future well because of unfore-
seen structural changes or regime shifts in the data-generating
process. Therefore, from both practical and theoretical stand-
points, in-sample analysis alone is not adequate, and it is nec-
essary to examine the out-of-sample predictive ability of spot
rate models.

We contribute to the literature by providing the first com-
prehensive empirical analysis (to our knowledge) of the out-
of-sample performance of a wide variety of popular spot rate
models. Although some existing studies (e.g., Gray 1996; Bali
2000; Duffee 2002) have conducted out-of-sample analysis of
interest rate models, what distinguishes our study is that we
focus on forecasting the probability density of future interest
rates, rather than just the conditional mean or the first few
conditional moments. This distinction is important because in-
terest rates, like most other financial time series, are highly
non-Gaussian. Consequently, one must go beyond the condi-
tional mean and variance to get a complete picture of interest
rate dynamics. The conditional probability density character-
izes the full dynamics of an interest rate model and thus es-
sentially checks all conditional moments simultaneously (if the
moments exist).

Density forecasts are important not only for statistical evalua-
tion, but also for many economic and financial applications. For
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example, the booming industry of financial risk management is
essentially dedicated to providing density forecasts for impor-
tant economic variables and portfolio returns, and to tracking
certain aspects of distribution, such as value at risk (VaR), to
quantify the risk exposure of a portfolio (e.g., Morgan 1996;
Duffie and Pan 1997; Jorion 2000). More generally, modern
risk control techniques all involve some form of density fore-
cast, the quality of which has real impact on the efficacy of
capital asset/liability allocation. In macroeconomics, monetary
authorities in the United States and United Kingdom (the Fed-
eral Reserve Bank of Philadelphia and the Bank of England)
have been conducting quarterly surveys on density forecasts
for inflation and output growth to help set their policy instru-
ments (e.g., inflation target). There is also a growing literature
on extracting density forecasts from options prices to obtain
useful information on otherwise unobservable market expecta-
tions (e.g., Fackler and King 1990; Jackwerth and Rubinstein
1996; Soderlind and Svensson 1997; Ait-Sahalia and Lo 1998).

In the recent development of time series econometrics, there
is a growing interest in out-of-sample probability distribution
forecasts and their evaluation, motivated from the context of
decision-making under uncertainty. Important works in this
area include those of Bera and Ghosh (2002), Berkowitz (2001),
Christoffersen and Diebold (1996, 1997), Clements and Smith
(2000), Diebold, Gunther, and Tay (1998), Diebold, Hahn, and
Tay (1999), Diebold, Tay, and Wallis (1999), Granger (1999),
and Granger and Pesaran (2000). One of the most important is-
sues in density forecasting is to evaluate the quality of a forecast
(Granger 1999). Suboptimal density forecasts will have real ad-
verse impact in practice. For example, an excessive forecast for
VaR would force risk managers and financial institutions to hold
too much capital, imposing an additional cost. Suboptimal den-
sity forecasts for important macroeconomic variables may lead
to inappropriate policy decisions (e.g., inappropriate level and
timing in setting interest rates), which could have serious con-
sequences for the real economy.

Evaluating density forecasts, however, is nontrivial, sim-
ply because the probability density function of an underly-
ing process is not observable even ex post. Unlike for point
forecasts, there are few statistical tools for evaluating density
forecasts. In a pioneering contribution, Diebold et al. (1998)
evaluated density forecast by examining the probability inte-
gral transforms of the data with respect to a density forecast
model. Such a transformed series is often called the “gener-
alized residuals” of the density forecast model. It should be
iid U[0,1] if the density forecast model correctly captures the
full dynamics of the underlying process. Any departure from
iid U[0,1] is evidence of suboptimal density forecasts and
model misspecification.

Diebold et al. (1998) used an intuitive graphical method to
separately examine the iid and uniform properties of the “gener-
alized residuals.” This method is simple and informative about
possible sources of suboptimality in density forecasts. Hong
(2003) recently developed an omnibus evaluation procedure for
density forecasts by measuring the departure of the “general-
ized residuals” from iid U[0,1]. The evaluation statistic pro-
vides a metric of the distance between the density forecast
model and the true data-generating process. The most appeal-
ing feature of this new test is its omnibus ability to detect a

wide range of suboptimal density forecasts, thanks to the use of
the generalized spectrum. The latter was introduced by Hong
(1999) as an analytic tool for nonlinear time series and is based
on the characteristic function in a time series context. There has
been an increasing interest in using the characteristic function
in financial econometrics (see, e.g., Chacko and Viceira 2003;
Ghysels, Carrasco, Chernov, and Florens 2001; Hong and Lee
2003a,b; Jiang and Knight 1997; Singleton 2001).

Applying Hong’s (2003) procedure, we provide a compre-
hensive empirical analysis of the density forecast performance
of a variety of popular spot rate models, including single-factor
diffusion, generalized autoregressive conditional heteroscedas-
ticity (GARCH), regime-switching, and jump-diffusion models.
The in-sample performance of these models has been exten-
sively studied, but their out-of-sample performance, especially
their density forecast performance is still largely unknown.
We find that although previous studies have shown that sim-
pler models, such as the random walk model, tend to provide
better forecasts for the conditional mean of many financial time
series, including interest rates and exchange rates (e.g., Duffee
2002; Meese and Rogoff 1983), more-sophisticated spot rate
models that capture volatility clustering, and excess kurtosis
and heavy tails of interest rates have better density forecasts.
GARCH significantly improves the modeling of the dynam-
ics of the conditional variance and kurtosis of the generalized
residuals, whereas regime switching and jumps significantly
improve the modeling of the marginal density of interest rates.
Our analysis shows that the sophisticated spot rate models in
the existing literature can indeed capture some important fea-
tures of interest rates and are relevant to applications involving
density forecasts of interest rates.

The article is organized as follows. In Section 2 we discuss
the methodology for density forecast evaluation. In Section 3
we introduce a variety of popular spot rate models. In Section 4
we describe data, estimation methods, and the in-sample per-
formance of each model. In Section 5 we subject each model
to out-of-sample density forecast evaluation, and in Section 6
we provide concluding remarks. In the Appendix we discuss
Hong’s (2003) evaluation procedure for density forecasts.

2. OUT–OF–SAMPLE DENSITY
FORECAST EVALUATION

The probability density function is a well-established tool
for characterizing uncertainty in economics and finance (e.g.,
Rothschild and Stiglitz 1970). The importance of density fore-
casts has been widely recognized in recent literature due to the
works of Diebold et al. (1998), Granger (1999), and Granger
and Pesaran (2000), among many others. These authors showed
that accurate density forecasts are essential for decision mak-
ing under uncertainty when the forecaster’s objective function
is asymmetric and the underlying process is non-Gaussian. In
a decision-theoretic context, Diebold et al. (1998) and Granger
and Pesaran (2000) showed that if a density forecast coincides
with the true conditional density of the data generating process,
then it will be preferred by all forecast users regardless of their
objective functions (e.g., risk attitudes). Thus testing the opti-
mality of a forecast boils down to checking whether the density
forecast model can capture the true data-generating process.
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This is a challenging job, because we never observe an ex post
density. So far there are few statistical evaluation procedures for
density forecasts.

Diebold et al. (1998) used the probability integral transform
of data with respect to the density forecast model to assess the
optimality of density forecasts. Extending a result established
by Rosenblatt (1952), they showed that if the model conditional
density is specified correctly, then the probability integral trans-
formed series should be iid U[0,1].

Specifically, for a given model of interest rate rt , there is a
model-implied conditional density

∂

∂r
P(rt ≤ r|It−1, θ) = p(r, t|It−1, θ),

where θ is an unknown finite-dimensional parameter vector
and It−1 ≡ {rt−1, . . . , r1} is the information set available at
time t − 1. Suppose that we have a random sample {rt}N

t=1 of
size N, which we divide into two subsets, an estimation sam-
ple {rt}R

t=1 of size R and a prediction sample {rt}N
t=R+1 of size

n = N − R. We can then define the dynamic probability inte-
gral transform of the data {rt}N

t=R+1 with respect to the model
conditional density,

Zt(θ) ≡
∫ rt

−∞
p(r, t|It−1, θ)dr, t = R + 1, . . . ,N.

Suppose that the model is correctly specified in the sense that
there exists some θ0 such that p(r, t|It−1, θ0) coincides with
the true conditional density of rt . Then the transformed se-
quence {Zt(θ0)} is iid U[0,1].

For example, consider the discretized Vasicek model

�rt = α0 + α1rt−1 + σ zt,

where {zt} ∼ iid N(0,1). For this model, the conditional density
of rt given It−1 is

p(r, t|It−1, θ)

= 1√
2πσ 2

exp

{
− 1

2σ 2

[
r − (

α0 + (1 + α1)rt−1
)]2

}
,

r ∈ (−∞,∞),

where θ = (α0, α1, σ )′. Suppose that p(r, t|It−1, θ0) =
p0(r, t|It−1) for some θ0, where p0(r, t|It−1) is the true con-
ditional density of rt . Then

Zt(θ0) =
∫ rt

−∞
p(r, t|It−1, θ0)dr = �(zt) ∼ iid U[0,1],

where �(·) is the N(0,1) cumulative distribution function (cdf).
As noted earlier, the transformed series {Zt(θ̂ )} is called the

“generalized residual” of model p(r, t|It−1, θ), where θ̂ is a con-
sistent estimator for θ0. This series provides a convenient ap-
proach for evaluating the density forecast model p(r, t|It−1, θ).
Intuitively, the U[0,1] property characterizes the correct spec-
ification for the stationary distribution of {rt}, and the iid
property characterizes correct dynamic specification for {rt}.
If {Zt(θ)} is not iid U[0,1] for all θ , then the density forecast
model p(r, t|It−1, θ) is not optimal, and there is room for fur-
ther improvement.

To test the joint hypothesis of iid U[0,1] for {Zt(θ)} is non-
trivial. One may suggest using the well-known Kolmogorov–
Smirnov test, which unfortunately checks U[0,1] under the

iid assumption rather than checking iid U[0,1] jointly. It will
miss the alternatives for which {Zt(θ)} is uniform, but not iid.
Similarly, tests for iid alone will miss the alternatives for which
{Zt(θ)} is iid but not U[0,1]. Moreover, parameter estimation
uncertainty is expected to affect the asymptotic distribution of
the Kolmogorov–Smirnov test statistic.

Diebold et al. (1998) used the autocorrelations of Zm
t (θ̂) to

check the iid property and the histogram of Zt(θ̂) to check
the U[0,1] property. These graphical procedures are simple
and informative. To compare and rank different models, how-
ever, it is desirable to use a single evaluation criterion. Hong
(2003) recently developed an omnibus evaluation procedure for
out-of-sample density forecast that tests the joint hypothesis of
iid U[0,1] and explicitly addresses the impact of parameter esti-
mation uncertainty on the evaluation statistics. This is achieved
using a generalized spectral approach. The generalized spec-
trum was first introduced by Hong (1999) as an analytic tool
for nonlinear time series analysis. It is based on the charac-
teristic function transformation embedded in a spectral frame-
work. Unlike the power spectrum, the generalized spectrum can
capture any kind of pairwise serial dependence across various
lags, including those with zero autocorrelation [e.g., an ARCH
process with iid N(0,1) innovations].

Specifically, Hong (2003) introduced a modified generalized
spectral density function that incorporates the information of
iid U[0,1] under the null hypothesis. Consequently, the mod-
ified generalized spectrum becomes a known “flat” function
under the null hypothesis of iid U[0,1]. Whenever Zt(θ) de-
pends on Zt−j(θ) for some j > 0 or {Zt(θ)} is not U[0,1], the
modified generalized spectrum will be nonflat as a function
of frequency ω. Hong (2003) proposed an evaluation statistic
(denoted by M1) for out-of-sample density forecasts, by com-
paring a kernel estimator of the modified generalized spectrum
with the flat spectrum.

The most attractive feature of M1 is its omnibus property;
it has power against a wide range of suboptimal density fore-
casts, thanks to the use of the characteristic function in a spec-
tral framework. The M1 statistic can be viewed as an omnibus
metric measuring the departure of the density forecast model
from the true data-generating process. A better density fore-
cast model is expected to have a smaller value of M1, because
its generalized residual series {Zt(θ)} is closer to having the
iid U[0,1] property. Thus M1 can be used to rank competing
density forecast models in terms of their deviations from opti-
mality. (See the Appendix for more discussion.)

When a model is rejected using M1, it is interesting to ex-
plore possible reasons for the rejection. The model gener-
alized residuals {Zt(θ)} contain much information on model
misspecification. As noted earlier, Diebold et al. (1998) have
illustrated how to use the histograms of {Zt(θ)} and autocor-
relograms {Zm

t (θ)} to identify sources of suboptimal density
forecasts. Although intuitive and convenient, these graphi-
cal methods ignore the impact of parameter estimation un-
certainty in θ̂ on the asymptotic distribution of evaluation
statistics, which generally exists even when n → ∞. Hong
(2003) provided a class of rigorous asymptotically N(0,1)

separate inference statistics M(m, l ) that measure whether the
cross-correlations between Zm

t (θ) and Zl
t−| j|(θ) are significantly

different from 0. Although the moments of the generalized
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residuals {Zt} are not exactly the same as those of the original
data {rt}, they are highly correlated. In particular, the choice of
(m, l ) = (1,1), (2,2), (3,3), and (4,4) is very sensitive to au-
tocorrelations in level, volatility, skewness, and kurtosis of {rt}.
Furthermore, the choices of (m, l ) = (1,2) and (2,1) are sen-
sitive to the “ARCH-in-mean” effect and the “leverage” effect.
Different choices of order (m, l ) can thus illustrate various dy-
namic aspects of the underlying process rt . (Again, see the Ap-
pendix for more discussion.)

3. SPOT RATE MODELS

We apply Hong’s (2003) procedure to evaluate the density
forecast performance of a variety of popular spot rate models,
including single-factor diffusion, GARCH, regime-switching,
and jump-diffusion models. We now discuss these models
in detail.

3.1 Single-Factor Diffusion Models

One important class of spot rate models is the continuous-
time diffusion models, which have been widely used in modern
finance because of their convenience in pricing fixed-income
securities. Specifically, the spot rate is assumed to follow a
single-factor diffusion,

drt = µ(rt, θ)dt + σ(rt, θ)dWt,

where µ(rt, θ) and σ(rt, θ) are the drift and diffusion functions
and Wt is a standard Brownian motion. For diffusion models,
µ(rt, θ) and σ(rt, θ) completely determine the model transition
density, which in turn captures the full dynamics of rt . Table 1
lists a variety of discretized diffusion models examined in our
analysis, which are nested by Ait-Sahalia’s (1996) nonlinear
drift model,

�rt = α−1/rt−1 + α0 + α1rt−1 + α2r2
t−1 + σ rρ

t−1zt, (1)

where {zt} ∼iid N(0,1). To be consistent with the other mod-
els considered in this article, we study the discretized version
of the single-factor diffusion and jump-diffusion models. The
discretization bias for daily data that we use in this article is
unlikely to be significant (e.g., Stanton 1997; Das 2002). In (1),
we allow the drift to have zero, linear, and nonlinear specifi-
cations and allow the diffusion to be a constant or to depend
on the interest rate level, which we refer to as the “level ef-
fect.” We term the volatility specification in which the elasticity
parameter ρ is estimated from the data the constant elasticity
volatility (CEV). Density forecasts for the spot rate rt are given
by the model-implied transition density p(rt, t|It−1, θ̂), where
θ̂ is a parameter estimator using the maximum likelihood es-
timate (MLE) method. Because we study discretized diffusion
models, the MLE method is suitable. For the continuous-time
diffusion models, we can use the closed-form likelihood func-
tion, if available, or the approximated likelihood function via
Hermite expansions (see Ait-Sahalia 1999, 2002).

3.2 GARCH Models

Despite the popularity of single-factor diffusion models,
many studies (e.g., Brenner, Harjes, and Kroner 1996; Andersen
and Lund 1997) have shown that these models are unreasonably
restrictive by requiring that the interest rate volatility depend
solely on the interest rate level. To capture the well-known
persistent volatility clustering in interest rates, Brenner et al.
(1996) introduced various GARCH specifications for volatil-
ity and showed that GARCH models significantly outperform
single-factor diffusion models for in-sample fit.

To understand the importance of GARCH for density fore-
cast, we consider six GARCH models as listed in Table 1, which
are nested by the following specification:




�rt = α−1/rt−1 + α0 + α1rt−1 + α2r2
t−1

+ σ r ρ
t−1

√
htzt

ht = β0 + ht−1(β2 + β1r2ρ
t−1z2

t−1)

{zt} ∼ iid N(0,1).

(2)

We consider three different drift specifications (zero, linear, and
nonlinear drift) and two volatility specifications (pure GARCH
and combined CEV–GARCH). These various GARCH models
allow us to examine the importance of linear versus nonlinear
drift in the presence of GARCH and CEV and the incremental
contribution of GARCH with respect to CEV. For identification,
we set σ = 1 in all GARCH models.

Another popular approach to capturing volatility clustering is
the continuous-time stochastic volatility model considered by
Andersen and Lund (1997), Gallant and Tauchen (1998), and
many others. These studies show that adding a latent stochas-
tic volatility factor to a diffusion model significantly improves
the goodness of fit for interest rates. We leave continuous-
time stochastic volatility models for future research, because
their estimation is much more involved. On the other hand,
we also need to be careful about drawing any implications
from GARCH models for continuous-time stochastic volatility
models. Although Nelson (1990) showed that GARCH mod-
els converge to stochastic volatility models in the limit, Corradi
(2000) later showed that Nelson’s results hold only under his
particular discretization scheme. Other equally reasonable dis-
cretizations will lead to very different continuous-time limits
for GARCH models.

3.3 Markov Regime-Switching Models

Many studies have shown that the behavior of spot rates
changes over time due to changes in monetary policy, the
business cycle, and general macroeconomic conditions. The
Markov regime-switching models of Hamilton (1989) have
been widely used to model the time-varying behavior of interest
rates (e.g., Gray 1996; Ball and Torous 1998; Ang and Bekaert
2002; Li and Xu 2000; among others). Following most existing
studies, we consider a class of two-regime models for the spot
rate, where the latent state variable st follows a two-state, first-
order Markov chain. We refer to the regime in which st = 1 (2)
as the first (second) regime. Following Ang and Bekaert (2002),
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Table 1. Spot Rate Models Considered for Density Forecast Evaluation

Model Mean Volatility

Discretized single-factor diffusion models
Random walk α0 σ
Log-normal α1rt−1 σ rt−1
Dothan 0 σ rt−1
Pure CEV 0 σ r ρ

t−1
Vasicek α0 + α1rt−1 σ

CIR α0 + α1rt−1 σ r .5t−1
CKLS α0 + α1rt−1 σ r ρ

t−1
Nonlinear drift α−1/rt−1 + α0 + α1rt−1 + α2r2

t−1 σ r ρ
t−1

GARCH models
No drift GARCH 0 σ

√
ht

Linear drift GARCH α0 + α1rt−1 σ
√

ht
Nonlinear drift GARCH α−1/rt−1 + α0 + α1rt−1 + α2r2

t−1 σ
√

ht
No drift CEV–GARCH 0 σ r ρ

t−1

√
ht

Linear drift CEV–GARCH α0 + α1rt−1 σ r ρ
t−1

√
ht

Nonlinear drift CEV–GARCH α−1/rt−1 + α0 + α1rt−1 + α2r2
t−1 σ r ρ

t−1

√
ht

Markov regime-switching models

No drift RS CEV 0 σ (st )r
ρ(st )
t−1

Linear drift RS CEV α0(st ) + α1(st )rt−1 σ (st )r
ρ(st )
t−1

Nonlinear drift RS CEV α−1(st )/rt−1 + α0(st ) + α1(st )rt−1 + α2(st )r2
t−1 σ (st )r

ρ(st )
t−1

No drift RS GARCH 0 σ (st )
√

ht
Linear drift RS GARCH α0(st ) + α1(st )rt−1 σ (st )

√
ht

Nonlinear drift RS GARCH α−1(st )/rt−1 + α0(st ) + α1(st )rt−1 + α2(st )r2
t−1 σ (st )

√
ht

No drift RS CEV–GARCH 0 σ (st )r
ρ(st )
t−1

Linear drift RS CEV–GARCH α0(st ) + α1(st )rt−1 σ (st )r
ρ(st )
t−1

Nonlinear drift RS CEV–GARCH α−1(st )/rt−1 + α0(st ) + α1(st )rt−1 + α2(st )r2
t−1 σ (st )r

ρ(st )
t−1

Discretized jump-diffusion models
No drift JD CEV 0 σ r ρ

t−1
Linear drift JD CEV α0 + α1rt−1 σ r ρ

t−1
Nonlinear drift JD CEV α−1/rt−1 + α0 + α1rt−1 + α2r2

t−1 σ r ρ
t−1

No drift JD GARCH 0 σ
√

ht
Linear drift JD GARCH α0 + α1rt−1 σ

√
ht

Nonlinear drift JD GARCH α−1/rt−1 + α0 + α1rt−1 + α2r2
t−1 σ

√
ht

No drift JD CEV–GARCH 0 σ r ρ
t−1

√
ht

Linear drift JD CEV–GARCH α0 + α1rt−1 σ r ρ
t−1

√
ht

Nonlinear drift JD CEV–GARCH α−1/rt−1 + α0 + α1rt−1 + α2r2
t−1 σ r ρ

t−1

√
ht

NOTE: For consistency, all models are estimated in a discrete time setting using the maximum likelihood method (MLE). The eight discretized single-factor diffusion models are nested
by the following specification: �rt − 1 = α−1/rt − 1 + α0 + α1 rt − 1 + α2r 2

t − 1 + σ r ρzt
t − 1 , where {zt } ∼ iid N(0, 1). The six GARCH models are nested by the following specification: �rt =

α−1/rt − 1 + α0 + α1rt − 1 + α2r 2
t − 1 + σ r ρ

t − 1

√
ht zt , where ht = β0 + ht − 1 (β2 + β1r 2ρ

t − 1z2
t − 1 ) and {zt } ∼ iid N(0, 1). The nine regime-switching models are nested by the following specification:

�rt = α−1(st )/rt − 1 + α0 (st ) + α1(st )rt − 1 + α2(st )r 2
t − 1 + σ (st )r

ρ(st )
t − 1

√
ht zt , where ht = β0 + β1E{et |rt − 2, st − 2}2 + β2ht − 1 ,et = [�rt − 1 − E(�rt − 1 |rt − 2 ,st − 1 )]/σ (st − 1 ), {zt } ∼ iid N(0, 1), and st follows

a two-state Markov chain with the transition probability Pr (st = l|st − 1 = l ) = (1 + exp(−cl − dl rt − 1))−1 for l = 1, 2. The nine discretized jump-diffusion models are nested by the following specifica-
tion: �rt = α−1/rt − 1 + α0 + α1rt − 1 + α2 r 2

t − 1 + σ r ρ
t − 1

√
ht zt + J(µ,γ 2 )�πt (qt ), where ht = β0 + β1[rt − 1 − E(rt − 1 |rt − 2 )]2 + β2ht − 1 , {zt } ∼ iid N(0, 1), J ∼ N(µ,γ 2 ), and �πt (qt ) is Bernoulli(qt ) with

qt = (1 + exp(−c − drt − 1 ))−1 .

we assume that the transition probability of {st} depends on the
once-lagged spot rate level,

Pr(st = l|st−1 = l ) = 1

1 + exp(−cl − dlrt−1)
.

Table 1 lists a variety of regime-switching models, all of
which are nested by the following specification:



�rt = α−1(st)/rt−1 + α0(st) + α1(st)rt−1

+ α2(st)r
2
t−1 + σ(st)r

ρ(st)
t−1

√
htzt

ht = β0 + β1E{et|rt−2, st−2}2 + β2ht−1

et = [�rt−1 − E(�rt−1|rt−2, st−1)]/σ(st−1)

{zt} ∼ iid N(0,1).

(3)

As in the aforementioned models, we consider three specifica-
tions of the conditional mean: zero, linear, and nonlinear drift.
We also consider three specifications of the conditional vari-
ance: CEV, GARCH, and combined CEV–GARCH. Thus we
have a total of nine regime-switching models.

Although Gray (1996) removed the path-dependent nature
of GARCH models by averaging the conditional and un-
conditional variances over regimes at every time point, we
use the same GARCH specification across different regimes.
Confirming results of Ang and Bekaert (2002), we find a very
unstable estimation of Gray’s (1996) model. In contrast, our
specification turns out to have much better convergence prop-
erties. Unlike many previous studies that set the elasticity
parameter equal to .5, we allow it to be regime-dependent and
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estimate it from the data. For identification, we set the diffusion
constant σ(st) = 1 for st = 1 in the regime-switching models
with GARCH effect.

The conditional density of the interest rate rt in a regime-
switching model is

p(�rt|It−1) =
2∑

l=1

p(�rt|st = l, It−1)Pr(st = l|It−1),

where the ex ante probability that the data are generated from
regime l at t, Pr(st = l|It−1), can be obtained using Bayes’s rule
via a recursive procedure described by Hamilton (1989). The
conditional density of regime-switching models is a mixture of
two normal distributions, which can generate unimodal or bi-
modal distributions and allows for great flexibility in modeling
skewness, kurtosis, and heavy tails.

3.4 Jump-Diffusion Models

There are compelling economic and statistical reasons to
account for discontinuity in interest rate dynamics. Various eco-
nomic shocks, news announcements, and government interven-
tions in bond markets have pronounced effects on the behavior
of interest rates and tend to generate large jumps in interest
rate data. Statistically, Das (2002) and Johannes (2003), among
others, have shown that diffusion models (even with stochastic
volatility) cannot generate the excessive leptokurtosis exhibited
by the changes of the spot rates and that jump-diffusion mod-
els are a convenient way to generate excessive kurtosis or, more
generally, heavy tails.

We consider a class of discretized jump-diffusion mod-
els listed Table 1. As in the aforementioned models, we
consider zero, linear, and nonlinear drift specifications and
CEV, GARCH and combined CEV–GARCH specifications for
volatility. The nine different jump-diffusion models are nested
by the following specification:




�rt = α−1/rt−1 + α0 + α1rt−1 + α2r2
t−1

+ σ r ρ
t−1

√
htzt + J(µ,γ 2)�πt(qt)

ht = β0 + β1[rt−1 − E(rt−1|rt−2)]2 + β2ht−1

{zt} ∼ iid N(0,1)

{�πt(qt)} ∼ independent Bernoulli(qt)

J ∼ N(µ,γ 2),

(4)

where J is the jump size and qt is the jump probability with
qt = 1

1+exp(−c−drt−1)
.

The conditional density of the foregoing jump-diffusion
models can be written as

f (�rt|rt−1)

= (1 − qt)
1√

2πσ 2(rt−1)
exp

{−[�rt − µ(rt−1)]2

2σ 2(rt−1)

}

+ qt
1√

2π[σ 2(rt−1) + σ 2
J ]

× exp

{−[�rt − µ(rt−1) − µ]2

2[σ 2(rt−1) + γ 2]
}
,

where µ(rt−1) and σ 2(rt−1) are the conditional mean and vari-
ance of the diffusion part in (4). Similar to the regime-switching
models, the conditional density of the jump-diffusion mod-
els is also a mixture of two normal distributions. Thus these
two classes of models represent two alternative approaches
to generating excess kurtosis and heavy tails, although the
regime-switching models have more sophisticated specifica-
tions. For example, in (3) all drift parameters are regime-
dependent, whereas in (4) only the intercept term is different
in the conditional mean and variance. For the regime-switching
models in (3), the state probabilities evolve according to a tran-
sition matrix with updated priors at every time point. Thus it
can capture both very persistent and transient regime shifts. For
the jump-diffusion models in (4), the state probabilities are as-
sumed to depend on the past interest rate level.

The in-sample performances of the four classes of models
that we study have been individually studied in the literature.
However, no one has yet attempted a systematic evaluation of
all of these models in a unified setup, particularly in the out-
of-sample context, because of the difficulty in density forecast
evaluation and because of different nonnested specifications
between existing classes of models. In the next section we com-
pare the relative performance of these four classes of models
in out-of-sample density forecast using the evaluation method
described in Section 2. This comparison can provide valuable
information about the relative strengths and weaknesses of each
model and should be important for many applications.

4. MODEL ESTIMATION AND
IN–SAMPLE PERFORMANCE

4.1 Data and Estimation Method

In modeling spot interest rate dynamics, yields on short-term
debts are often used as proxies for the unobservable instan-
taneous risk-free rate. These include the 1-month T-bill rates
used by Gray (1996) and Chan, Karolyi, Longstaff, and Sanders
(CKLS) (1992), the 3-month T-bill rates used by Stanton (1997)
and Andersen and Lund (1997), the 7-day Eurodollar rates used
by Ait-Sahalia (1996) and Hong and Li (2004), and the Fed
funds rates used by Conley, Hansen, Luttmer, and Scheinkman
(1997) and Das (2002). In our study, we follow CKLS (1992)
and use the daily 1-month T-bill rates from June 14, 1961 to De-
cember 29, 2000, with a total of 9,868 observations. The data
are extracted from the CRSP bond file using the midpoint of
quoted bid and ask prices of the T-bills with a remaining ma-
turity that is closest to 1 month (30 calendar days) from the
current date. Most of these T-bills have maturities of 6 months
or 1 year when first issued and all T-bills used in our study have
a remaining maturity between 27 and 33 days. We then com-
pute the annualized continuously compounded yield based on
the average of the ask and bid prices.

Figure 1 plots the level and change series of the daily
1-month T-bill rates, as well as their histograms. There is
obvious persistent volatility clustering, and in general, the
volatility is higher at a higher level of the interest rate (e.g.,
the 1979–1982 period). The marginal distribution of the inter-
est rate level is skewed to the right, with a long right tail. Most
daily changes in the interest rate level are very small, giving a
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Figure 1. Daily 1-Month T-Bill Rates Between June 14, 1961 and December 29, 2000. This figure plots the level and change series of the daily
1-month T-bill rates, as well as their histograms. The data are extracted from the CRSP bond file using the midpoint of quoted bid and ask prices of
the T-bills with a remaining maturity that is closest to 1 month (30 calendar days) from the current date.

sharp probability peak around 0. Daily changes of other spot in-
terest rates, such as 3-month T-bill and 7-day Eurodollar rates,
also exhibit a high peak around 0. But the peak is much less
pronounced for weekly changes in spot rates. This, together
with the long (right) tail, implies excess kurtosis, a stylized fact
that has motivated the use of jump models in the literature (e.g.,
Das 2002; Johannes 2003).

We divide our data into two subsamples. The first, from
June 14, 1961 to February 22, 1991 (with a total of 7,400 ob-
servations), is a sample used to estimate model parameters; the
second, from February 23, 1991 to December 29, 2000 (with
a total of 2,467 observations), is a prediction sample used to
evaluate out-of-sample density forecasts. We first consider the
in-sample performance of the various models listed in Table 1,
all of which are estimated using the MLE method. The opti-
mization algorithm is the well-known BHHH with STEPBT for
step length calculation and is implemented via the constrained
optimization code in GAUSS Windows Version 5.0. The op-
timization tolerance level is set such that the gradients of the
parameters are less than or equal to 10−6.

Tables 2–5 report parameter estimates of four classes of spot
rate models using daily 1-month T-bill rates from June 14, 1961
to February 22, 1991, with a total of 7,400 observations. To ac-
count for the special period between October 1979 and Septem-
ber 1982, we introduce dummy variables to the drift, volatility,
and elasticity parameters; that is, αD, σD, and ρD equal 0 out-
side of the 1979–1982 period. We also introduce a dummy
variable, D87, in the interest rate level to account for the effect
of 1987 stock market crash. D87 equals 0 except for the week
right after the stock market crash. Estimated robust standard er-
rors are reported in parentheses.

4.2 In-Sample Evidence

We first discuss the in-sample performance of models within
each class and then compare their performance across dif-
ferent classes. Many previous studies (e.g., Bliss and Smith

1998) have shown that the period between October 1979 and
September 1982, which coincides with the Federal Reserve ex-
periment, has a big impact on model parameter estimates. To
account for the special feature of this period, we introduce
dummy variables in the drift, volatility, and elasticity parame-
ters for this period. We also introduce a dummy variable in the
interest rate level for the week right after 1987 stock market
crash. Brenner et al. (1996) showed that the decline of the in-
terest rates during this week is too dramatic to be captured by
most standard models.

Table 2 reports parameter estimates with estimated robust
standard errors and log-likelihood values for discretized single-
factor diffusion models. The estimates of the drift parameters
of Vasicek, CIR, and CKLS models all suggest mean-reversion
in the conditional mean, with an estimated 6% long-run mean.
For other models, such as the random walk, log-normal, and
nonlinear drift models, most drift parameters are not signifi-
cant. A comparison of the pure CEV, CKLS, and Ait-Sahalia
(1996) nonlinear drift models indicates that the incremental
contribution of nonlinear drift is very marginal, which is not
surprising given that the drift parameter estimates in the non-
linear drift model are mostly insignificant. On the other hand,
there is also a clear evidence of level effect; all estimates of
the elasticity parameter are significant. Unlike previous stud-
ies (e.g., CKLS 1992), which found an estimated elasticity pa-
rameter close to 1.5, our estimate is about .25 (.70) outside
(inside) the 1979–1982 period. Our results confirm previous
findings of Brenner et al. (1996), Andersen and Lund (1997),
Bliss and Smith (1998), and Koedijk, Nissen, Schotman, and
Wolff (1997) that the estimate of the elasticity parameter is
very sensitive to the choice of interest rate data, data frequency,
sample periods, and specifications of the volatility function.
The 1979–1982 period dummies suggest that the drift does not
behave very differently (i.e., αD is not significant), whereas
volatility is significantly higher and depends more heavily on
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Table 2. Parameter Estimates for the Single-Factor Diffusion Models

Nonlinear
Parameters RW Log-normal Dothan Pure CEV Vasicek CIR CKLS drift

α−1 .0289
(.0751)

α0 .0012 .0196 .0190 .0199 −.0098
(.0019) (.0056) (.0049) (.0053) (.0485)

α1 .0006 −.0033 −.0032 −.0034 .0045
(.0004) (.0010) (.0009) (.0009) (.0095)

α2 −.0006
(.0006)

σ .1523 .0304 .0304 .1011 .1522 .0658 .1007 .1007
(.0013) (.0003) (.0003) (.0041) (.0013) (.0006) (.0041) (.0041)

ρ .2437 .2460 .2460
(.0238) (.0238) (.0238)

αD −.0047 .0196 .0154 .0233 .0266 .0402
(.0157) (.0186) (.0168) (.0176) (.0168) (.0202)

σD .2768 .0175 .0175 .2764 .0712
(.0112) (.0013) (.0013) (.0112) (.0036)

ρD .3692 .3684 .3680
(.0132) (.0132) (.0132)

D87 −.3988 −.2107 −.2079 −.3549 −.4003 −.3101 −.3574 −.3582
(.0681) (.0660) (.0660) (.0671) (.0681) (.0655) (.0670) (.0671)

Log-likelihood 2,649.6 2,187.0 2,184.9 2,654.5 2,655.5 2,672.0 2,661.7 2,662.5

NOTE: The models are nested by the following specification: �rt = α−1/rt − 1 + (α0 + αD ) + α1rt − 1 + α2r 2
t − 1 + (σ + σD )r (ρ + ρD )

t − 1 zt + D87 , where
{zt } ∼ iid N(0, 1).

the interest rate level in this period (i.e., σD and ρD are signif-
icantly positive) than in other periods. For models with level
effect, we introduce the dummy only for elasticity parameter ρ,
to avoid the offsetting effect of dummies in ρ and σ , which
would tend to generate unstable estimates. The stock market
crash dummy is significantly negative, which is consistent with
the findings of Brenner et al. (1996).

Estimation results of GARCH models in Table 3 show
that GARCH significantly improves the in-sample fit of dif-
fusion models (i.e., the log-likelihood value increases from

about 2,500 to about 5,700). Previous studies, such as those
by Bali (2001) and Durham (2003), have also shown that for
single-factor diffusion, GARCH, and continuous-time stochas-
tic volatility models, it is more important to correctly model
the diffusion function than the drift function in fitting interest
rate data. This suggests that volatility clustering is an important
feature of interest rates. All estimates of GARCH parameters
are overwhelmingly significant. The sum of GARCH parame-
ter estimates, β̂1 + β̂2, is slightly larger (smaller) than 1 without
(with) level effect. Although the sum of GARCH parameters is

Table 3. Parameter Estimates for the GARCH Models

No drift Linear drift Nonlinear drift No drift Linear drift Nonlinear drift
Parameters GARCH GARCH GARCH CEV–GARCH CEV–GARCH CEV–GARCH

α−1 .1556 .1716
(.0470) (.0457)

α0 .0053 −.1117 .0063 −.1233
(.0025) (.0323) (.0025) (.0311)

α1 −.0003 .0263 −.0006 .0290
(.0006) (.0069) (.0006) (.0066)

α2 −.0018 −.0020
(.0004) (.0004)

ρ .1709 .1797 .1926
(.0298) (.0301) (.0300)

β0 9.7E−05 8.6E−05 8.6E−05 8.9E−05 8.2E−05 8.2E−05
(1.2E−05) (1.2E−05) (1.6E−05) (1.0E−05) (.9E−05) (.9E−05)

β1 .1552 .1544 .1563 .0896 .0875 .0851
(.0097) (.0096) (.0099) (.0104) (.0101) (.0098)

β2 .8707 .8723 .8712 .8583 .8582 .8553
(.0065) (.0064) (.0065) (.0074) (.0076) (.0078)

αD .0166 .1119 .0550 .1317
(.0318) (.0229) (.0282) (.0201)

σD .1368 .1302 .1017
(.0327) (.0331) (.0334)

ρD .0151 .0064 −.0053
(.0134) (.0146) (.0142)

D87 −.5397 −.5426 −.5460 −.5288 −.5318 −.5352
(.0774) (.0777) (.0771) (.0753) (.0751) (.0741)

Log-likelihood 5,686.8 5,699.5 5,706.3 5,701.1 5,715.2 5,725.5

NOTE: The models are nested by the following specification: �rt = α−1/rt − 1 + (α0 + αD ) + α1 rt − 1 + α2r 2
t − 1 + (1 + σD )r (ρ + ρD )

t − 1

√
ht zt + D87 , where

ht = β0 + ht − 1(β2 + β1r 2ρ
t − 1z2

t − 1 ) and {zt } ∼ iid N(0, 1).
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Table 4. Parameter Estimates for the Markov Regime-Switching Models

Linear drift Nonlinear drift No drift Linear drift Nonlinear drift No drift Linear drift Nonlinear drift
Parameters No drift CEV CEV CEV GARCH GARCH GARCH CEV–GARCH CEV–GARCH CEV–GARCH

α−1(1) .0607 .3321 .2646
(.3569) (.1701) (.1605)

α0(1) .0973 .1517 .0457 −.1462 .0450 −.1086
(.0259) (.2027) (.0107) (.1009) (.0105) (.0989)

α1(1) −.0102 −.0288 −.0043 .0274 −.0042 .0209
(.0031) (.0321) (.0019) (.0181) (.0019) (.0185)

α2(1) .0011 −.0015 −.0011
(.0014) (.0010) (.0011)

σ (1) .3361 .3171 .3106 1 1 1 1 1 1
(.0302) (.0287) (.0281)

ρ(1) .1021 .1277 .138 0 0 0 .1193 .1589 .1670
(.044) (.0446) (.0448) (.0452) (.0460) (.0487)

α−1(2) −.0352 −.0267 −.0286
(.0329) (.0242) (.0183)

α0(2) −.0002 .0141 −.0013 .0062 −.0020 .0062
(.0020) (.0229) (.0017) (.0153) (.0018) (.0104)

α1(2) −.0006 −.0012 −.0008 −.0001 −.0007 .0005
(.0004) (.0048) (.0004) (.0031) (.0004) (.0020)

α2(2) −.0001 −.0002 −.0002
(.0003) (.0002) (.0001)

σ (2) .0143 .0141 .0138 .2566 .2567 .2574 .2769 .3034 .3051
(.0010) (.0010) (.0010) (.006) (.006) (.006) (.0275) (.0303) (.0311)

ρ(2) .8122 .8179 .8257 0 0 0 .0844 .0727 .0800
(.0403) (.0422) (.0421) (.0602) (.0602) (.0611)

β0 3.83E−4 3.18E−4 2.96E−4 3.21E−4 2.43E−4 2.25E−4
(7.11E−5) (6.14E−5) (5.79E−5) (.67E−4) (.50E−4) (.47E−4)

β1 .0357 .0336 .0335 .0265 .0259 .0252
(.004) (.0039) (.0038) (.0057) (.0055) (.0053)

β2 .9027 .9066 .9077 .8972 .8993 .9001
(.009) (.0089) (.0086) (.0099) (.0098) (.0094)

c1 .3132 .3001 .3171 −1.2515 −1.2007 −1.1293 −1.1954 −1.1429 −1.0012
(.2734) (.273) (.2683) (.3211) (.3065) (.3136) (.3819) (.3705) (.3674)

d1 .1081 .107 .1029 .1303 .1295 .1192 .1190 .1193 .0959
(.0391) (.039) (.0381) (.044) (.0426) (.0447) (.0594) (.0582) (.0593)

c2 4.0963 4.0342 4.0089 1.8864 1.7868 1.7633 1.8227 1.7299 1.6947
(.2386) (.2393) (.2313) (.2048) (.1947) (.1909) (.2092) (.1983) (.2009)

d2 −.2302 −.225 −.2225 −.0938 −.0806 −.0776 −.0906 −.0810 −.0757
(.0354) (.0354) (.0339) (.0276) (.0263) (.0257) (.0285) (.0276) (.0283)

Log-likelihood 6,493.1 6,507.9 6,512.8 7,079.0 7,132.8 7,138.2 7,082.8 7,138.6 7,144.1

NOTE: The models are nested by the following specification: �rt = α−1 (st )/rt − 1 + α0(st ) + α1(st )rt − 1 + α2(st )r 2
t − 1 + σ (st )r

ρ(st )
t − 1

√
ht zt , where ht = β0 + β1E{et |rt − 2 ,st − 2 }2 + β2ht − 1 ,

et = [�rt − 1 − E(�rt − 1 |rt − 2 , st − 1 )]/σ (st − 1 ), {zt } ∼ iid N(0, 1), and st follows a two-state Markov chain with transition probability Pr (st = l|st − 1 = l ) = (1 + exp(−cl − dl rt − 1))−1 for l = 1, 2.

slightly larger than 1, it is still possible that the spot rate model
is strictly stationary (see Nelson 1991 for more discussion).
We also find a significant level effect even in the presence of
GARCH, but the estimated elasticity parameter is close to .20,
which is much smaller than that of single-factor diffusion mod-
els. The specification of conditional variance also affects the es-
timation of drift parameters. Unlike those in diffusion models,
most drift parameter estimates in linear drift GARCH models
are insignificant. Among all GARCH models considered, the
one with nonlinear drift and level effect has the best in-sample
performance. In the 1979–1982 period, the interest rate volatil-
ity is significantly higher, but its dependence on the interest rate
level is not significantly different from other periods. The 1987
stock market crash dummy is again significantly negative.

Parameter estimates of regime-switching models, given in
Table 4, show that the spot rate behaves quite differently
between two regimes. Although the sum of GARCH parame-
ters is slightly larger than 1, it is still possible that the spot rate
model is strictly stationary (see Nelson 1991 for more discus-
sion). For models with a linear drift, in the first regime the spot
rate has a high long-run mean (about 10%) and exhibits strong

mean reversion (i.e., estimates of the mean-reversion speed pa-
rameter are significantly negative). The spot rate in the second
regime behaves almost like a random walk, because most drift
parameter estimates are close to 0 and insignificant. For mod-
els with a nonlinear drift, all drift parameters are insignificant.
Volatility in the first regime is much higher, about three times
that in the second regime. Our estimates show that level ef-
fect, although significant in both regimes, is much stronger in
the second regime in the absence of GARCH. After including
GARCH, the elasticity parameter estimate becomes insignif-
icant in the second regime, but remains the same in the first
regime. Apparently, regime switching helps capture volatility
clustering; the sum of GARCH parameters, β̂1 + β̂2, is smaller
in regime-switching models than in pure GARCH models. The
estimated transition probabilities of the Markov state variable st

show that the low-volatility regime is much more persistent than
the high-volatility regime. Our results suggest that the spot rate
evolves like a random walk with low volatility most of time, oc-
casionally increasing and evolving with strong mean reversion
and high volatility. Overall, the regime-switching model with
a linear drift in each regime, CEV, and GARCH has the best
in-sample performance.
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Table 5. Parameter Estimates for the Jump-Diffusion Models

Linear drift Nonlinear drift No drift Linear drift Nonlinear drift No drift Linear drift Nonlinear drift
Parameters No drift CEV CEV CEV GARCH GARCH GARCH CEV–GARCH CEV–GARCH CEV–GARCH

α−1 .0264 .0702 .0661
(.0293) (.0384) (.0380)

α0 −.0011 −.0340 .0028 −.0506 .0026 −.0486
(.0169) (.0203) (.0019) (.0256) (.0020) (.0253)

α1 −.0007 .0101 −.0013 .0110 −.0012 .0107
(.0004) (.0043) (.0004) (.0053) (.0004) (.0052)

α2 −.0009 −.0008 −.0008
(.0003) (.0003) (.0003)

σ .0127 .0126 .0124
(.0008) (.0008) (.0008)

ρ .8936 .8975 .9045 .0929 .0852 .0837
(.0390) (.0397) (.0400) (.0518) (.0510) (.0512)

β0 8.7E−05 8.8E−05 8.7E−05 7.6E−5 7.7E−5 7.7E−5
(1.2E−05) (1.2E−05) (1.2E−05) (1.2E−5) (1.2E−5) (1.2E−5)

β1 .0631 .0640 .0635 .0450 .0472 .0472
(.0076) (.0073) (.0073) (.0101) (.0102) (.0102)

β2 .8514 .8484 .8499 .8504 .8471 .8483
(.0139) (.0134) (.0134) (.0140) (.0135) (.0134)

c −2.7404 −2.7057 −2.6972 −3.7908 −3.7470 −3.7481 −3.6908 −3.6498 −3.6518
(.1608) (.1605) (.1614) (.1982) (.1970) (.1976) (.2097) (.2084) (.2093)

d .1451 .1423 .1397 .2554 .2516 .2509 .2293 .2274 .2272
(.0275) (.0275) (.0275) (.0307) (.0305) (.0307) (.0343) (.0340) (.0341)

µ .0233 .0385 .0321 .0700 .0887 .0895 .0679 .0892 .0897
(.0133) (.0142) (.0128) (.0152) (.0158) (.0158) (.0162) (.0164) (.0163)

γ .4316 .4279 .4304 .3928 .3903 .3929 .4109 .4046 .4061
(.0117) (.0120) (.0104) (.0197) (.0189) (.0187) (.0199) (.0182) (.0178)

αD −.0094 .0296 −.0192 .0057 −.0197 .0055
(.0121) (.0112) (.0117) (.0154) (.0112) (.0150)

σD −.1027 −.1328 −.1551
(.1142) (.1054) (.1033)

ρD .1473 .1872 −.0697 −.1220 −.1186 −.1277
(.1079) (.0703) (.0722) (.0769) (.0573) (.0564)

cD 4.1604 4.3364 4.0036 4.0290 4.2505 4.1857 3.8622 4.0677 4.0272
(.6523) (.6535) (.5477) (.7495) (.7546) .7421 (.6911) (.7129) (.7019)

dD −.2441 −.2721 −.1836 −.2748 −.2860 −.2791 −.2320 −.2487 −.2445
(.0808) (.0730) (.0534) (.0689) (.0682) .0667 (.0685) (.0676) (.0662)

D87 −.4283 −.4253 −.4266 −.4226 −.4198 −.4217 −.4233 −.4209 −.4225
(.0646) (.0641) (.0643) (.0826) (.0820) (.0815) (.0793) (.0793) (.0791)

Log-likelihood 6,306.3 6,317.2 6,326.3 6,794.1 6,810.8 6,813.9 6,796.3 6,812.9 6,816.1

NOTE: The models are nested by the following specification: �rt = α−1/rt − 1 + (α0 + αD ) + α1 rt − 1 + α2 r 2
t − 1 + (σ + σD )r (ρ + ρD )

t − 1

√
ht zt + J(µ,γ 2)�πt (qt + qD ) + D87 , where ht = β0 +

β1[rt − 1 − E(rt − 1 |rt − 2)]2 + β2ht − 1 , {zt } ∼ iid N(0, 1), J ∼ N(µ,γ 2 ), and �πt (qt + qD ) is Bernoulli(qt + qD ) with qt + qD = (1 + exp(−c − cD − (d + dD) · rt − 1))−1 .

Table 5 reports parameter estimates for discretized jump-
diffusion models. There is some weak evidence of mean re-
version, especially when there is GARCH. The contribution of
nonlinear drift is again very marginal: most estimated drift pa-
rameters are insignificant. For jump-diffusion models, without
GARCH, the elasticity parameter estimate is about .9, which
is closer to the 1.5 found by CKLS. However, level effect is
weakened (i.e., ρ̂ becomes close to .1) after GARCH is in-
troduced. It seems that CEV helps capture part of volatility
clustering, but its importance diminishes in the presence of
GARCH. We find that GARCH also significantly improves
the performance of jump-diffusion models. Without GARCH,
there is a high probability of small jumps, with an estimated
mean jump size between 2% and 4%. With GARCH, the jump
probability becomes smaller, but the mean jump size increases
to about between 7% and 9%. This suggests that without
GARCH, jumps can capture part of volatility clustering, but
with GARCH, jumps mainly capture large interest rate move-
ments. Of course, jumps also help explain volatility cluster-
ing; the sum of GARCH parameters is again much smaller
than that in pure GARCH models. During the 1979–1982 pe-
riod, other than the probability of jumps becoming substan-

tially higher, other aspects of the jump-diffusion models (e.g.,
the drift, volatility, or elasticity parameter) do not behave
very differently.

To sum up, our in-sample analysis reveals some important
stylized facts for the spot rate:

1. The importance of modeling mean reversion in mean is
ambiguous. It seems that linear drift is adequate for this
purpose once GARCH, regime switching, or jumps are
included. The contribution of Ait-Sahalia’s (1996) type of
nonlinear drift is very marginal.

2. It is important to model conditional heteroscedasticity
through GARCH or level effect, although GARCH seems
to have much better in-sample performance than CEV.

3. Regime switching and jumps help capture volatility clus-
tering and especially the excess kurtosis and heavy-tails
of the interest rate.

4. Interest rates behave quite differently during the
1979–1982 period. The level and volatility of the inter-
est rate, the dependence of the interest rate volatility on
the interest rate level, and the probability of jumps are
much higher during this period.
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5. OUT–OF–SAMPLE DENSITY
FORECAST PERFORMANCE

The foregoing in-sample analysis demonstrates that model-
ing volatility clustering through GARCH and heavy tails and
excess kurtosis through regime switching or jumps significantly
improves the in-sample fit of historical interest rate data. How-
ever, it is not clear whether these models will also perform
well in out-of-sample density forecasts for future interest rates.
Indeed, some previous studies have shown that more compli-
cated models actually underperform the simple random walk
model in predicting the conditional mean of future interest
rates (e.g., Duffee 2002). In many financial applications, we
are interested in forecasting the whole conditional distribu-
tion. We now apply the generalized spectral evaluation method
described in Section 2 to evaluate density forecasts of the mod-
els under study. Among other things, we examine whether
the features found to be important for in-sample performance
remain important for out-of-sample forecasts, and whether the
best in-sample performing models still perform best in out-of-
sample forecasts.

For each model, we first calculate {Zt(θ̂ )}, then model gen-
eralized residuals using the prediction sample, with model
parameter estimates based on the estimation sample. Table 6
reports the out-of-sample evaluation statistic M1 for each

model. To compute M1, we select a normal cdf �(
√

12u) for
the weighting function W(u) and a Bartlett kernel for the kernel
function k(z). To choose a lag order p, we use a data-driven
method that minimizes the asymptotic integrated mean squared
error of the modified generalized spectral density. This method
involves choosing a preliminary lag order p̄. We examine a wide
range of p̄ in our application. We obtain similar results for the
preliminary lag order p̄ between 10 and 30 and report results for
p̄ = 20 in Table 6. For comparison, we also report the in-sample
log-likelihood values obtained from the estimation sample.

The M1 statistics show that all single-factor diffusion mod-
els are overwhelmingly rejected. One of the most interesting
findings is that models that include a drift term (either linear or
nonlinear) have much worse out-of-sample performance than
those without a drift. Dothan’s (1978) model and the pure CEV
model have the best density forecast performance. Both mod-
els have a zero drift and level effect, the elasticity parameter
ρ = 1 for the former and .25 (.60 for the 1979–1982 period)
for the latter. On the other hand, although the CKLS model
and Ait-Sahalia’s (1996) nonlinear drift model have the highest
in-sample likelihood values, they have the worst out-of-sample
density forecasts in terms of M1. This seems to suggest that for
the purpose of density forecast, it is much more important to
model the diffusion function than the drift function. Of course,
this does not necessarily mean that the drift is not important.

Table 6. Out-of-Sample Density Forecast Performance of Spot Interest Rate Models

Model M1 Log-likelihood

Single-factor diffusion models Random walk .108∗∗∗ 2,649.6
Log-normal .121∗∗∗ 2,187.0
Dothan .067∗∗ 2,184.9
Pure CEV .082∗∗ 2,654.5
Vasicek .213∗∗∗ 2,655.5
CIR .219∗∗∗ 2,672.0
CKLS .219∗∗∗ 2,661.7
Nonlinear drift .224∗∗∗ 2,662.5

GARCH models No drift GARCH .079∗∗ 5,686.8
Linear drift GARCH .276∗∗∗ 5,699.5
Nonlinear drift GARCH .339∗∗∗ 5,706.3
No drift CEV–GARCH .077∗∗ 5,701.1
Linear drift CEV–GARCH .291∗∗∗ 5,715.2
Nonlinear drift CEV–GARCH .358∗∗∗ 5,725.5

Regime-switching models No drift RS CEV .129∗∗∗ 6,493.1
Linear drift RS CEV .091∗∗∗ 6,507.9
Nonlinear drift RS CEV .162∗∗∗ 6,512.8
No drift RS GARCH .118∗∗∗ 7,079.0
Linear drift RS GARCH .047∗ 7,132.8
Nonlinear drift RS GARCH .055∗∗ 7,138.2
No drift RS CEV–GARCH .124∗∗∗ 7,082.8
Linear drift RS CEV–GARCH .056∗∗ 7,138.6
Nonlinear drift RS CEV–GARCH .067∗∗ 7,144.1

Jump-diffusion models No drift JD CEV .180∗∗∗ 6,306.3
Linear drift JD CEV .039∗ 6,317.2
Nonlinear drift JD CEV .076∗∗ 6,326.3
No drift JD GARCH .178∗∗∗ 6,794.1
Linear drift JD GARCH .056∗∗ 6,810.8
Nonlinear drift JD GARCH .067∗∗ 6,813.9
No drift JD CEV–GARCH .174∗∗∗ 6,796.3
Linear drift JD CEV–GARCH .053∗∗ 6,812.9
Nonlinear drift JD CEV–GARCH .065∗∗ 6,816.1

NOTE: This table reports the out-of-sample density forecast performance of the single-factor diffusion, GARCH, Markov regime-switching, and
jump-diffusion models measured by the M1 statistic. For convenience of comparison, we also report the in-sample log-likelihood value for each
model. The in-sample parameter estimation is based on the observations from June 14, 1961 to February 2, 1991, and the out-of-sample density
forecast evaluation is based on the observations from February 23, 1991 to December 29, 2000. The ratio between the size of the estimation
sample and the forecast sample is about 3 : 1. In computing the out-of-sample M1 statistics, a preliminary lag order p̄ of 20 is used. Other lag
orders give similar results. The asymptotic critical values for the out-of-sample evaluation statistic are .087, .051, and .037 at the 1%, 5%, and 10%
levels and ∗∗∗ , ∗∗ , and ∗ indicate that the M1 statistic is significant at the 1%, 5%, and 10% levels.
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It might be simply because the drift specifications considered
are severely misspecified and do not outperform the zero drift
model. In fact, most drift parameter estimates have large stan-
dard errors and thus have excess sampling variation in para-
meter estimation. As a consequence, assuming zero drift may
result in a smaller adverse effect on out-of-sample performance.

The generalized residuals {Zt(θ̂ )} contain much information
about possible sources of model misspecification. Instead of
being uniform, the histograms of the generalized residuals for
all diffusion models (Fig. 2) exhibit a high peak in the cen-
ter of the distribution, which indicates that the diffusion mod-
els cannot satisfactorily capture the marginal density of the
spot rate. The separate inference statistics M(m, l ) in Table 7
also show that all the models fail to satisfactorily capture the
dynamics of the generalized residuals. In particular, the large
M(2,2) and M(4,4) statistics indicate that diffusion models
perform rather poorly in modeling the conditional variance and
kurtosis of the generalized residuals.

Similar to single-factor diffusion models, GARCH models
with a zero drift have much better density forecasts than those
models with a linear or nonlinear drift. The best GARCH
and diffusion models have M1 statistics roughly between .07

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 2. Histograms of the Generalized Residuals of Four Classes
of Spot Rate Models. This figure plots the histograms of the generalized
residuals of the single-factor diffusion, GARCH, regime-switching, and
jump-diffusion spot rate models.

and .08. Comparing the best GARCH and single-factor dif-
fusion models, we find that GARCH provides better density
forecasts than CEV, and combining CEV and GARCH further
improves the density forecasts. Diagnostic analysis of general-
ized residuals shows that GARCH models provide certain im-
provements over diffusion models. For example, the histograms
of the generalized residuals of GARCH models have a less-
pronounced peak in the center. The M(m, l ) statistics show that
GARCH models significantly improve the fitting of even-order
moments of the generalized residuals; the M(2,2) and M(4,4)

statistics are reduced from close to 100 to single digits!
In summary, our analysis of single-factor diffusion and

GARCH models demonstrates that both classes of models fail
to provide good density forecasts for future interest rates. They
fail to capture both the high peak in the center of the mar-
ginal density and the dynamics of different moments of the
generalized residuals. GARCH models have a more uniform
marginal density and significantly improve the ability to model
the dynamics of even-order moments of the generalized residu-
als. For both classes of models, modeling the conditional vari-
ance through CEV or GARCH is much more important than
modeling the conditional mean of the interest rate. Zero-drift
models outperform either linear or nonlinear drift models in
density forecast, although the M(1,1) statistics suggest that
neither model adequately captures the dynamic structure in the
conditional mean of the generalized residuals.

We next turn to regime-switching models. Regime-switching
models generally have better density forecasts than single-
factor diffusion and GARCH models: the best regime-switching
models reduce the M1 statistics of the best diffusion and
GARCH models from above .07 to about .05. Although mod-
eling the drift does not improve density forecast for diffusion
and GARCH models, the best regime-switching models in den-
sity forecast have a linear drift in each regime. As pointed out
by Ang and Bekaert (2002) and Li and Xu (2000), a regime-
switching model with a linear drift in each regime actually im-
plies nonlinear conditional mean dynamics for the interest rate.
Thus our results suggest that perhaps a specific nonlinear drift
is needed for out-of-sample density forecasts. GARCH is more
important than CEV for density forecasts, and combining CEV
with GARCH does not further improve model performance.
Overall, the regime-switching GARCH model with a linear drift
in each regime provides the best out-of-sample forecasts among
all of the regime-switching models. Diagnostic analysis shows
that regime-switching models provide a much better charac-
terization of the marginal density of interest rates; the his-
tograms of the generalized residuals are much closer to U[0,1].
The M(2,2) and M(4,4) statistics of regime-switching models
are slightly higher than those of GARCH models, however, and
the M(1,1) and M(3,3) statistics of regime-switching models
are actually higher than those of diffusion and GARCH models.
Therefore the advantages of regime-switching models seem to
come from better modeling of the marginal density, rather than
from the dynamics of the generalized residuals.

The density forecast performance of jump-diffusion models
shares many common features with that of regime-switching
models. First, they have comparable performance; the M1 sta-
tistics of the best jump-diffusion models are also around .05.
Second, for jump-diffusion models, the linear drift specifi-
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Table 7. Separate Inference Statistics for Out-of-Sample Density Forecast Performance

Model M(1, 1) M(1, 2) M(2, 1) M(2, 2) M(3, 3) M(4, 4)

Single-
factor
diffusion
models

Random walk 40.08 6.35 40.48 99.73 21.50 80.12
Log-normal 46.52 8.77 39.91 110.10 26.98 92.51
Dothan 46.04 8.07 42.62 108.90 27.02 91.03
Pure CEV 41.62 6.63 41.55 96.81 22.85 80.42
Vasicek 40.40 8.13 35.55 100.20 21.43 81.79
CIR 43.61 8.68 36.30 98.57 24.39 85.02
CKLS 42.02 8.55 35.75 97.89 22.80 82.77
Nonlinear drift 42.40 8.37 35.93 98.47 22.77 82.98

GARCH
models

No drift GARCH 40.73 3.75 28.21 7.68 17.57 2.53
Linear drift GARCH 41.07 4.66 25.11 7.53 17.00 2.35
Nonlinear drift GARCH 40.71 4.87 24.70 7.02 16.63 2.09
No drift CEV–GARCH 41.30 4.10 28.40 7.46 19.24 2.74
Linear drift CEV–GARCH 41.68 5.11 25.06 7.09 18.73 2.44
Nonlinear drift CEV–GARCH 41.43 5.45 24.32 6.45 18.54 2.17

Regime-
switching
models

No drift RS CEV 53.16 3.13 11.31 7.05 35.02 10.21
Linear drift RS CEV 53.25 4.56 11.16 6.57 34.31 8.83
Nonlinear drift RS CEV 53.75 5.12 9.84 6.56 34.50 8.49
No drift RS GARCH 57.29 4.05 21.59 10.95 43.71 7.63
Linear drift RS GARCH 55.46 4.56 21.09 12.38 40.71 9.14
Nonlinear drift RS GARCH 55.69 4.50 21.05 12.14 41.13 8.93
No drift RS CEV–GARCH 45.35 3.69 20.91 10.67 34.25 7.08
Linear drift RS CEV–GARCH 44.10 4.86 20.75 11.99 32.12 8.87
Nonlinear drift RS CEV–GARCH 44.36 4.84 20.55 11.40 32.46 8.32

Jump-
diffusion
models

No drift JD CEV 47.38 5.32 16.76 85.10 43.01 99.31
Linear drift JD CEV 46.32 4.48 19.63 85.09 42.26 99.82
Nonlinear drift JD CEV 46.50 4.85 18.31 85.10 42.48 99.29
No drift JD GARCH 43.32 5.10 20.35 12.38 28.44 8.96
Linear drift JD GARCH 42.57 4.60 21.48 12.19 28.22 8.84
Nonlinear drift JD GARCH 42.62 4.67 21.42 12.34 28.24 8.95
No drift JD CEV–GARCH 43.55 5.05 20.51 13.36 29.31 10.07
Linear drift JD CEV–GARCH 42.74 4.54 21.69 13.00 28.93 9.76
Nonlinear drift JD CEV–GARCH 42.78 4.62 21.57 13.07 28.94 9.81

NOTE: This table reports the separate inference statistics M(m, l) for the four classes of spot rate models. The asymptotically normal statistic M(m, l) can be used to test
whether the cross-correlation between the mth and lth moments of {Zt } is significantly different from 0. The choice of (m, l) = (1, 1), (2, 2), (3, 3), and (4, 4) is sensitive to
autocorrelations in mean, variance, skewness, and kurtosis of {rt }. We report results only for a lag truncation order p = 20; the results for p = 10 and 30 are rather similar. The
asymptotical critical values are 1.28, 1.65, and 2.33 at the 10%, 5%, and 1% levels.

cation outperforms those with no drift or nonlinear drift for
density forecasts. Third, for jump-diffusion models, GARCH
generally provides better density forecasts than CEV. Fourth,
jump-diffusion models have similar advantages over single-
factor diffusion and GARCH models. They have much bet-
ter characterization of the marginal density of the generalized
residuals, but they may not necessarily perform better in mod-
eling the dynamics of the generalized residuals, as indicated
by their large M(m, l ) statistics. The jump model with a lin-
ear drift and level effect, although it has the smallest M1 statis-
tic, apparently fails to capture the even-order moments of the
generalized residuals, with M(2,2) and M(4,4) statistics sig-
nificantly higher than other jump-diffusion models that include
GARCH effects.

In summary, our out-of-sample density forecast evaluation
reveals the following important features:

1. For out-of-sample density forecast, the importance of
modeling mean reversion in the interest rate is ambiguous.
For diffusion and GARCH models, a linear or nonlinear
drift gives worse density forecasts than a zero drift. How-
ever, when there are regime switches or jumps, linear drift
models outperform those with zero or nonlinear drift. The
best density forecast models still fail to adequately cap-
ture the mean dynamics of the generalized residuals.

2. It is important to capture volatility clustering in interest
rates for both in-sample and out-of-sample performance

via GARCH. Most of the best-performing models have a
GARCH component, which significantly improves their
ability to model the dynamics of the even-order moments
of the generalized residuals.

3. It is also important to capture excess kurtosis and heavy
tails of the interest rate for both in-sample and out-of-
sample performance via regime switching or jumps. The
advantages of regime-switching and jump models are
mainly reflected in modeling the marginal density, rather
than in the dynamics of the generalized residuals.

Overall, our out-of-sample analysis demonstrates that more-
complicated models that incorporate conditional heteroscedas-
ticity and heavy tails of interest rates tend to have a better
density forecast. This result is quite different from the results
for those that focus on conditional mean forecast. As widely
documented in the literature, the predictable component in
the conditional mean of the interest rate appears insignificant.
As a result, random walk models tend to outperform more-
sophisticated models in terms of mean forecast (e.g., Duffee
2002). However, density forecast includes all conditional mo-
ments, and as a result, those models that can capture the dy-
namics of higher-order moments tend to have better density
forecasts. Our analysis suggests that the more-complicated spot
rate models developed in the literature can indeed capture some
important features of interest rates and are relevant in applica-
tions involving density forecasts of interest rates.
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6. CONCLUSION

Despite the numerous empirical studies of spot interest rate
models, little effort has been devoted to examining their out-
of-sample forecast performance. We have contributed to the
literature by providing the first (to our knowledge) compre-
hensive empirical analysis of the out-of-sample performance
of a wide variety of popular spot rate models in forecasting
the conditional density of future interest rates. Out-of-sample
density forecasts help minimize the data snooping bias due to
excessive searching for more-complicated models using similar
datasets. The conditional density, which completely character-
izes the full dynamics of interest rates, is also an essential input
to many financial applications. Using a rigorous econometric
evaluation procedure for density forecasts, we examined the
out-of-sample performance of single-factor diffusion, GARCH,
regime-switching, and jump-diffusion models.

Although previous studies have shown that simpler models,
such as the random walk model, tend to have more accurate
forecasts for the conditional mean of interest rates, we find that
models that capture conditional heteroscedasticity and heavy
tails of the spot rate have better out-of-sample density forecasts.
GARCH significantly improves modeling of the conditional
variance and kurtosis of the generalized residuals, whereas
regime-switching and jumps help in modeling the marginal
density of interest rates. Therefore, our analysis shows that the
more-sophisticated interest rate models developed in the litera-
ture can indeed capture some important features of interest rate
data and perform better than simpler models in out-of-sample
density forecasts. Although we have focused on density fore-
casts of the spot rates here, there is evidence that the term struc-
ture of interest rates is driven by multiple factors (e.g., Dai and
Singleton 2000). Extending our analysis to forecast the joint
density of multiple yields is an interesting issue that we will
address in future research.
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APPENDIX: GENERALIZED SPECTRAL EVALUATION
FOR DENSITY FORECASTS

Here we describe Hong’s (2003) omnibus evaluation proce-
dure for out-of-sample density forecasts, as well as a class of
separate inference procedures. (For more discussion and formal
treatment, see Hong 2003.)

A.1 Generalized Spectrum

Generalized spectrum was proposed by Hong (1999) as an
analytic tool to provide an alternative to the power spectrum
and the higher-order spectrum (e.g., bispectrum) in time series
analysis. Define the centered generalized residual

Zt ≡ Zt(θ) =
∫ rt

−∞
p(r, t|It−1, θ)dr − 1

2
, t = R + 1, . . . ,T,

where p(r, t|It−1, θ) is a conditional density model for time
series {rt}. Suppose that the series {Zt}∞t=−∞ has marginal
characteristic function ϕ(u) ≡ E(eiuZt) and pairwise joint
characteristic function ϕj(u, v) ≡ E[exp{i(uZt + vZt−| j|)}],
where i ≡ √−1, u, v ∈ (−∞,∞) and j = 0,±1, . . . . The basic
idea of generalized spectrum is to transform the series {Zt} and
then consider the spectrum of the transformed series. Define the
generalized covariance function

σj(u, v) ≡ cov
(
eiuZt, eivZt−| j|), j = 0,±1, . . . .

Straightforward algebra yields σj(u, v) = ϕj(u, v) − ϕ(u)ϕ(v).
Because ϕj(u, v) = ϕ(u)ϕ(v) for all (u, v) if and only if
Zt and Zt−| j| are independent (cf. Lukacs 1970), σj(u, v) can
capture any type of pairwise serial dependence in {Zt} over
various lags, including those with zero autocorrelation in {Zt}.

Under certain regularity conditions on the temporal depen-
dence of {Zt}, the Fourier transform of the generalized covari-
ance function σj(u, v) exists and is given by

f (ω,u, v) ≡ 1

2π

∞∑
j=−∞

σj(u, v)e−ijω, ω ∈ [−π,π].

Like σj(u, v), f (ω,u, v) can capture any type of pairwise se-
rial dependence in {Zt} across various lags. An advantage of
spectral analysis is that f (ω,u, v) incorporates all lags simulta-
neously. Thus it can capture the dependent processes in which
serial dependence occurs only at higher-order lags. This can
arise from seasonality (e.g., calender effects) or time delay in
financial markets. Moreover, f (ω,u, v) is particularly powerful
in capturing the dependent alternatives whose serial depen-
dence decays to 0 slowly as j → ∞, such as slow mean-
reverting or persistent volatility clustering processes. For such
processes, f (ω,u, v) has a sharp peak at frequency 0.

The function f (ω,u, v) does not require any moment condi-
tion on {Zt}. When the moments of {Zt} exist, however, we can
differentiate f (ω,u, v) with respect to (u, v) at (0,0),

f (0,m,l )(ω,0,0) ≡ ∂m+l

∂um ∂vl
f (ω,u, v)

∣∣∣∣
(u,v)=(0,0)

= im+l

2π

∞∑
j=−∞

cov
(
Zm

t ,Zl
t−| j|

)
e−ijω.

In particular, f (0,1,1)(ω,0,0) is the well-known power spec-
tral density. (For applications of the power spectral density in
economics and finance, see, e.g., Granger 1969; Durlauf 1991;
Watson 1993.) For this reason, f (ω,u, v) is called the “gener-
alized spectral density” of {Zt}. The parameters (u, v) provide
much flexibility in capturing linear and nonlinear dependence.
Because f (ω,u, v) can be decomposed as a weighted sum of
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f (0,m,l)(ω,0,0) over various (m, l ) via a Taylor series expan-
sion around (0, 0), it contains information on all autocorrela-
tions and cross-correlations in the various power terms of {Zt}.
Thus it can be used to develop an omnibus procedure against a
wide range of dependent processes.

A.2 Omnibus Evaluation for Density Forecast

To evaluate out-of-sample density forecasts of model
p(r, t|It−1, θ), Hong (2003) used the generalized spectrum to
develop an omnibus test of iid U[− 1

2 , 1
2 ] for the centered gen-

eralized residual {Zt}. To test H0 : {Zt} ∼ iid U[− 1
2 , 1

2 ], we use
the modified generalized covariance

σU
j (u, v) ≡ ϕj(u, v) − ϕU(u)ϕU(v),

where ϕU(u) ≡ sin(u/2)/(u/2) is the characteristic function of
a U[− 1

2 , 1
2 ] random variable. Because σU

j (u, v) has incorpo-
rated the information of U[− 1

2 , 1
2 ], it can capture any pairwise

serial dependence in {Zt} and any deviation from U[− 1
2 , 1

2 ]. The
associated generalized spectrum is

f U(ω,u, v) ≡ 1

2π

∞∑
j=−∞

σU
j (u, v)e−ijω,

ω ∈ [−π,π],u, v ∈ (−∞,∞).

Under H0, we have σU
j (u, v) = 0 for all j 
= 0, and so

f U(ω,u, v) becomes a known “flat” spectrum,

f U
0 (ω,u, v) ≡ 1

2π
σU

0 (u, v)

= [ϕU(u + v) − ϕU(u)ϕU(v)], ω ∈ [−π,π].
When Zt and Zt−j are not independent at some lag j 
= 0, or
when Zt is not U[− 1

2 , 1
2 ], we have f U(ω,u, v) 
= f U

0 (ω,u, v).
Hence, to test H0, one can check whether a consistent estimator
of f U(ω,u, v) is significantly different from f U

0 (ω,u, v).
Suppose that θ̂ is an estimator for model parameter θ based

on the estimation sample {rt}R
t=1. To estimate f U(ω,u, v) using

the prediction sample {rt}N
t=R+1, we have to use the estimated

proxies {Ẑt}N
t=R+1, where

Ẑt ≡ Zt(θ̂)

=
∫ rt

−∞
p(r, t|It−1, θ̂ )dr − 1

2
, t = R + 1, . . . ,N.

Define the empirical measure,

σ̂U
j (u, v) ≡ ϕ̂j(u, v)−ϕU(u)ϕU(v), j = 0,±1, . . . ,±(n−1),

where n ≡ N − R is the size of the prediction sample, and the
empirical pairwise joint characteristic function,

ϕ̂j(u, v) ≡ (n − | j|)−1
N∑

t=R+| j|+1

exp
{
i
(
uẐt + vẐt−| j|

)}
.

We introduce a class of smoothed kernel estimators,

f̂ U(ω,u, v) ≡ 1

2π

n−1∑
j=1−n

(1 − | j|/n)1/2k( j/p)σ̂U
j (u, v)e−ijω,

where k(·) is a kernel and p ≡ p(n) is a bandwidth/lag order. An
example of k(·) is the Bartlett kernel

k(z) =
{

1 − |z| if |z| ≤ 1

0 otherwise.

For the choice of p, Hong (1999) suggested a data-driven
method that delivers an asymptotically optimal bandwidth in
terms of an integrated mean squared error criterion. This still
involves a preliminary bandwidth p̄, but the impact of choos-
ing p̄ is much smaller than the impact of choosing lag order p.

A convenient divergence measure for f̂ U(ω,u, v) and
f U
0 (ω,u, v) is the quadratic form

2πnQ( f̂ U, f U
0 )

≡ 2πn
∫ ∫ ∫ π

−π

| f̂ U(ω,u, v)

− f U
0 (ω,u, v)|2 dω dW(u)dW(v)

= n
∫ ∫

|ϕ̂0(u + v) − ϕU(u + v)|2 dW(u)dW(v)

+ 2
n−1∑
j=1

k2( j/p)(n − j)
∫ ∫

|σ̂U
j (u, v)|2 dW(u)dW(v),

where the weighting function W(·) is positive and nondecreas-
ing and the unspecified integrals are taken over the support
of W(·). An example of this is

W(u) = �(
√

12u),

where �(·) is the N(0,1) cdf, which is commonly used in the
characteristic function literature. The scale

√
12 matches the

standard deviation of U[− 1
2 , 1

2 ], but this is not necessary.
Our evaluation statistic for H0 is a properly centered and

scaled version of the quadratic form Q( f̂ U, f U
0 ),

M1 ≡
[

n−1∑
j=1

k2( j/p)

]−1

×
∫ ∫ n−1∑

j=1

k2( j/p)(n − j)|σ̂U
j (u, v)|2 dW(u)dW(v)

−
[∫

[1 − ϕU(u)2] dW(u)

]2

.

The asymptotic distribution of M1 was derived by Hong (2003).
Under H0 and a set of regularity conditions,

M1
d→

∫
|G(u, v)|2 dW(u)dW(v)

as n → ∞,R → ∞, and n1+δ/R → 0 for any arbitrary small
constant δ > 0, where G(u, v) is a complex-valued Gaussian
process with mean 0 and a known covariance function,

cov[G(u1, v1),G(u2, v2)]
= E[G(u1, v1)G(u2, v2)

∗]
= σU

0 (u1,−u2)ϕ
U(v1)ϕ

U(v2) + σU
0 (u1,−v2)ϕ

U(u2)ϕ
U(v1)

+ σU
0 (v1,−u2)ϕ

U(u1)ϕ
U(v2)

+ σU
0 (v1,−v2)ϕ

U(u1)ϕ
U(u2).
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The limit distribution of M1 is nonstandard. However, be-
cause the Gaussian process G(u, v) has mean 0 and a known,
distribution-free covariance function, the limit distribution
of M1 can be easily tabulated. When W(u) = �(

√
12u) with

a truncated support on [−1,1], the asymptotic critical values at
the 10%, 5%, and 1% levels are .037, .051, and .087.

The most attractive feature of M1 is its omnibus property;
it has power against a wide range of suboptimal density fore-
casts, thanks to the use of the characteristic function in a spec-
tral framework. The M1 statistic can be viewed as an omnibus
metric measuring the departure of the forecast model from the
true data-generating process. A better density forecast model is
expected to have a smaller value for M1, because its generalized
residual series {Zt} is closer to having the iid U[0,1] property.
Thus M1 can be used to rank competing density forecast mod-
els in terms of their deviations from optimality. Moreover, the
kernel function provides flexible weighting for various lags.
Nonuniform weighting kernels usually discount higher-order
lags. For most, if not all, economic and financial time series,
today’s behaviors are more affected by recent events than by
remote events. Thus downward weighting for higher-order lags
is expected to yield good power in finite samples.

A.3 Separate Inferences

When a model is rejected using M1, it is interesting to ex-
plore possible reasons for the rejection. Hong (2003) provided
a class of rigorous separate inference statistics that exploit the
information contained in modeling generalized residuals {Zt} to
understand possible reasons for model rejection. The M(m, l )
statistic is based on a kernel estimator of the generalized spec-
tral density derivative f (0,m,l)(ω,0,0), where m and l are the
orders of the derivatives with respect to u and v. The statistic
M(m, l ) is defined as

M(m, l ) =
[

n−1∑
j=1

(n − j)k2( j/p)ρ̂2
j (m, l )

−
n−1∑
j=1

k2( j/p)

]/[
2

n−2∑
j=1

k4( j/p)

]
,

where ρ̂j(m, l ) is the sample cross-correlation between Ẑm
t

and Ẑl
t−| j|, t = R + 1, . . . ,N. Under H0 and a set of regular-

ity conditions,

M(m, l )
d→N(0,1)

for any given (m, l ), as n,R → ∞. The upper-tailed N(0,1)

critical values at the 10%, 5%, and 1% levels are 1.28, 1.65,
and 2.33. As in the M1 test, Hong (2003) considered a data-
driven method for p that also involves the choice of a prelimi-
nary lag order p̄.

Although the moments of the generalized residuals {Zt} are
not exactly the same as those of the original data {rt}, they
are highly correlated. In particular, the choice of (m, l ) =
(1,1), (2,2), (3,3), and (4,4) is very sensitive to autocorrela-
tions in level, volatility, skewness, and kurtosis of {rt}. Further-
more, the choices of (m, l ) = (1,2) and (2,1) are sensitive to
the “ARCH-in-mean” effect and the “leverage” effect. Different

choices of order (m, l ) can thus allow examination of various
dynamic aspects of the underlying process.

[Received June 2002. Revised November 2003.]
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